Chem-Biochem Home | UMBC Home | Directory | Apply (Free!) | Administrative Resources | myChem | Search 
Office: MEYR 475D
Phone: 410-455-2512
Professional Interests
Courses Taught
Research Group
Elsa Garcin
Assistant Professor
Post-Doctoral The Scripps Research Institute, La Jolla (CA) 1999; Ph.D. Universite Joseph Fourier, Grenoble (France) 1998; M.S. Universite Joseph Fourier, Grenoble (France) 1994
CHEM 490
Structural Biology. Spring 2012.
This class is a valid upper elective for Biochem majors.
Click on the link above to see the syllabus.
CHEM 490
Structural Biology. SPRING 2011
Here are some subjects we will explore in the class:
- Structural Biology (x-ray crystallography and other techniques to get
information on the 3D structure of proteins).
- How to use this information to understand how enzymes/proteins work,
interact with other proteins or DNA/RNA, how they are regulated, how it
can be used for structure-based drug-design.
- We will use specific graphic programs to look at structures, interfaces and
binding sites, programs to align protein sequences and analyze them.
- We will look at the tools available online for structural biology.
- We will explore specific pathways in the cell: for example the nitric
oxide pathway, DNA repair pathways, and others based on recent literature.

The course will be a combination of practical lectures (hands-on), short
lectures, papers reading and discussions.
CHEM 437
Fall 2010, Fall 2012
CHEM 690
The objective of this course is to improve students’ presentation skills. This course also serves as a core course for the chemistry graduate students. Fall 2009
CHEM 713
The objective of this course is to improve students’ scientific reporting, writing, critical thinking, and presentation skills, and to expose them to interdisciplinary research conducted by distinguished professionals from across the disciplines. This course also serves as a core course for the chemistry graduate students. Fall 2009.
CHEM 602
All semesters
CHEM 399
All semesters
CHEM 499
All semesters
CHEM 399
All semesters
CHEM 432
Special Topics in Protein Chemistry. Structural Biology. Fall 2008
Proteins adopt precise architectures in order to perform their task in the cell. Understanding how proteins fold into a specific 3D shape helps to decipher the complex mechanisms regulating protein function. This course will cover all aspects of the structure and function of proteins, the techniques used in structural biology and applications in basic and biomedical research. The structural biology component will comprise structure prediction and modeling, folding, and experimental methods including electron microscopy, nuclear magnetic resonance, mass spectrometry, x-ray crystallography and small-angle x-ray scattering. The biology component will include topics on enzyme kinetics and mechanisms, drug design, and cellular signaling pathways relevant to health and disease. Special case studies will be discussed to highlight the relationship between structure and function and to address the key role of structural biology for rational drug design. This course will provide basic understanding of structural biology methods and their applications to solve specific problems in biology.